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AB6~RACT . Let • . . , be complex constants. The

set W
(7,...,..~)(A) = {~~.Y~(Ax~,x~~}, where (x1,...,x~)

vary over all orthogonal systems in C~, is called a

generalized numerical range of a given n X n matrix A.

In this paper we study inclusion relations of the form

W, 
~~~~~ \ c 1W ,. I I ~ 

which hold uniformly for all
‘ti’ “~

‘n’ “v’]! “~‘n~
n-square matrices A. In particular we concentrate on the

case where the coefficients are real. Such inclusion

relations yield simple inequalities among generalized

numerical radii. Finally, a further generalization of the

above numerical range is discussed.

1. Introduction
—

Let A be an n x n complex matrix ; let c = (‘yr, . . . , 7) £ be a

fixed complex vector , and let A~ be the set of all orthonorn*]. n~tuples

of vectors in ~~ In this paper we study some inclusion relations between

generalized numerical ranges which are sets in the complex plane of the form

W
~
(A) = W(7,...7)(A) = {i~ y~(Axj~xj) : (x1,

...,x~) £ A~}.

0The research of the first author was sponsored in part by the Air Force
Office of Scientific Research, Air Force Systems Command, USAF, under
Grant No. AFOSR- 76-3046. The work of the second author was supported in
part by NSF Grant ?.fl’S1 71-2~384.
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From the definition it is clear that Wc(A) actually 
depends only on

the unordered set t?i’ ”’7n1 rather than on the ordered n-tuple

c = 

~~i’ ~ 
.,y~). In the following the vector c will always stand as a

representative of the set t~l’
” ’Tn} and we write c — C 1 if c and

c’ represent the same set.

We recall now the definition of the k-numerical range given by Halmos

[1, ~l67], which after a simple normalization becomes,

wk(A) = {.
~~ 

tr(PAP): P = projection of rank k}~ (i < k < n)

Evidently Wk(A) may 
be written as

(l.]a) Wk(A) ={
~ ~~ 

(Ax ~,x~) (xl,...,xk) £ Ak}

where Ak 
is the set of all k-tuples of orthonormal vectors in ~

r1 Hence

we see that

(l.lb) Wk(A) = W (A) with c = ~(e1 ÷ 
... + e,~) ,

being the standard basis for ~~ Thus, the k-numerical range is

a special case of a generalized numerical range. In particular, for k = 1,

i.e., for c = e1, we obtain the classical range

W(A) = W1(A) = C(Ax,x) : lx~ =

It is also clear that

W (A)=~~~ tr A}.

Berger, (1, ~].6.7], has shown that Wk(A) is convex. It was later

proven by Weatwick, ~2J, that W
~
(A) is convex for an~y C C 1~~. Weatwick

also gave an example which shows that for complex vectors c € C~ with
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n >  3, the range W (A) may fail to be convex.

~~~~~ 

-

Certain inclusion relations involving k-numerical ranges were given

in [ 3 ] .  As in [ 3] ,  we are Interested here in inclusions which hold uniformly

for al.] . A € ~~~~ that is for all n x n complex matrices . In this paper

we shall restrict our attention to eleznentary inclusion relations, i.e,

relation of the simple form

(1.2) W
~
(A) c 1W

~
t(A), 1~ = constant.

In a forthcoming paper we shall consider inclus ion relations involving

finite linear combinations and integrals of generalized numerical ranges .

We begin in Section 2 with some definit ions . This leads , in Section 3,

to the construction of inclusion relations of type (1.2) for the general

case c,c’ e C~. Further results are obtained in Section ~ for the case

C~ C 1 
~ In Section 5, we derive some inequalities among generalized

numerical radii. Finally, in Section 6, we define a further, and in a certain

sense an ultimate generalization of the concept of nu~~r ical range.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We begin by defining two partial order relations among ccinplex vectors .

DEFINITiON 1. (1) For c = 
~~~~~~~~~~~~~~~ 

and c’ = ~~~~~~~~~ in

we say that c < c’ if there exists a doubly stochastic matr ix S (i.e., a

matrix with non-negative entries whose row and columa sums are 1), such

that c~~~Sc ’.

(ii) The vector c is obtained from c’ by p~~ching if two compo-

nents ~~~~ of c’ are replaced by ‘y1, ’y~ with



-

(2.1) ‘Y~~=a .Y~~+ (1_a)7;, ‘v~~= ( l - a) ’v~~+ c x ’v~~; O < c r <z l ,

while the other components of c remain unchanged. Note that pinching an

n-tuple c ’ cons ists of moving two of its component s towards their mid-

point , and thus decreasing

conv(c ’) convex hull ~~~~~~~~~~ •

A similar concept of pinching was used in [J~] by Horn and Steinberg.

(iii) We say that c <.< & if c is obtained from c’ by a succes-

sion of a fi:nite number of pinchings.

Note that the relations <, ~<< are in fact relations between the

unordered n-tuples [y1, . . . , r y )  and • . . , ry~} . In case (i) it follows

from the fact that doubly stochastic matrices are closed under multiplica-

tions by permutation matrices. For case (iii) it follows directly

from the definition.

THEOREM 1. The relation c .<.< C’ imnlies c .< c’ but not conversely.

Proof. If C <c C 1
, then assume for simplicity that c has been obtained

from c’ by a single pinch. Hence, for some i,j € (1,”.,n) and cx with

O < a < 1, we have (2.1). So c = Sc’, where S is the doubly stochastic

matrix defined by

1 p = q / i ,j,

a (p,q) = (i,i),(j,j)
S =

1 - a (p,q) = (i,j),(j,i)

• 0 otherwise

Consequently c < c’ and the first par t of the proof is established.
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Next consider the vectors c = (l/2,i/2,l/2 + i/2) and c’ = (O,1,i).

Cl~ .rly

1/2 1/2 0

(2.2) c= Sc’ with S = 1/2 0 1/2

0 1/2 1/2

so c .< c’. However the components of c are all located on the

different edges of conv(c). Therefore, any chain of non-trivial pinches

on c’ yields a vector c”, where at least two components of c are

outside conv(c”). Hence c ~( c” and the relation c .<.< c’ fails to hold.

We now wish to show that .< is a partial order relation. For this

purpose we need the next lemma which seems of independent interest.

LEMMA 1. it c < c ’ and c’ .<c , then c — c ’.

Proof: Let a1,~ •~ ‘~k 
be the distinct components of c, ordered so that

Ia1 I > 2 ci~ I. Let the multiplicity of a2 be m2 
(
~ m2 = n), and

assume that c has been arranged to take the form

(2.3) c = ~~~~~~~~~ 
.,ak,

...,ak)

In view of the remark following ~~finition 1, the relations c .< c’, c’ < c

are still valid, hence t~~re exist doubly stochastic matrices 8,5’ such

that

(2.1~) c Sc’ and c ’ = S’c

thus c = SS’c. Since the class of n x n doubly stochastic matrices form

a multiplicative semigr oup we have



(2.5) c = Tc, (T = 55’)

where T is doubly stochastic as well. We assert that

(2.6) T = T l E~~~
•€ T k,

where T~ is doubly stochastic of order m2 X m2.

To prove (2.6) assume for simplicity that k = 2, i.e.,

c = (a1,
...,a1, a2,...,a2), a1 ~I a2, 1a11 2 1a21 ,

where the multiplicity of a2 (2 1,2), is m
2 

and m
1 

+ m
2 = n. Take

any of the first m
1 components of the equality In (2.5), say the 1-th one.

Since 1a11 ~ 1a2 1 this leads to

1 ‘ I fl
1a11 = ( ~ T1 )a1 + ( ~ T1 a2\j =i ~/ \j = m1+l ‘~

<(
~ 
;
~) 

ia1 i + 

(
~~~ 

T1~)I~~ i (
~~ 

Tj~) 
Ia1 I = Ia1 I

Hence we have equality which, In view of the fact that a1 ~ cx2, may hold

if and only if T1~ = 0 for j m1 + 1,.. ~,n. This means that the first

nil rows of T vanish beyond their m1 entries, so all the weight of these

rows is concentrated in the first m~ columns. Consequently, the first

colunuis of T vanish beyond their m.~ elements as well, and we obtain the

desired decomposition T = T
1~~ T2.

Next recall that doubly stochastic matrices are convex combinations of

p~ ’mutation matrices P0. . In particular B = E,,. ~~~ thus

T SS’ =

The matrices a0.PaS’ in the above sum have non-negative entries ; hence they
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must all have the same block decomposition as T. Now we choose a

coefficient aT with aT 
1 0, and conclude that P

T
S’ decomposes

according to (2.6). SInce P~S
’ is doubly stochastic and it has the same

decomposition (2.3) as c, it follows that P
T

S’c = c. So, finally, by

(2.11),

= s ’ C = (P;’)(PTs
’c) = P ’c — c

and the lemma follows.

REMARK. The above proof contains a special case of the following obser-

vation on group_rings over the reals (or any ordered field). Let

R(G) =~~~ a1g1 :a 1 €~~~, g 1 € G )

be a group-ring of G over ]R , and let K~ be the convex hull of G

in R(G), that is

iç~= [~~~a1g1 :a 1 > O , ~~a~~= l )

Then KG is a multiplicative semigroup whose units are the elements of G.

If H is a subgroup of G, then is a sub-sernigroup of KG and two

elements u,v of KG satisfy uv € K1~ If and only if there exists an

element g € 0 such that ug and g~~v are in K~. Thus the only divisors,

in K
0, 

of elements of KH 
are associates of elements of K.~.

We conclude this section with the following property of .< and <.<

THEORE M 2. The relations < and <c are partial urder relations on the set

of unordered n-tuples.
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Proof. We have to show that .< and << are reflexive, transitive and

antisymmetric . The first two properties are easily verified, and by Theorem 1,

c <c c ’ Implies c .< c’. So, it suffices to prove the antisymmetry of c,

i.e., that c < c ’ together with c’ ~< c yields c — c’. But this is the

statement of Lemma 1, and the proof is complete .

~~~~~~~~~~ tar i~~~us io~~~e1ations

Before considering a general n x n case we present the following

result concerning 2 X 2 matrIces .

LEMMA 2. If A is a 2 X 2 ~~Ix , then fo r any a1, a2,

• (3.1) W( a ,~~ ) (A) = (a~ - a2) W(A - ~(tr A)I) + ~~~~ + a2)[t r Al

Thus W1 ~(A) is convex.
~a1, c~,

Proof. As before let A2 denote the set of all orthonormal pairs of

2-vectors . If x1,x2 
is in A2, then

(3.2) a.~(Ax 1,x1) + o~(Ax 2,x2)

= ~(a1 - a2)(A x1,x,) - ~(a1 - a2)(A x2,x2) + ~(a1 + a2)((A x1,x1) + (Ax2,x2))

= (a1 - a2)(Ax1,x1) - ~(a1 - a0)trA + ~ (a1 + a2)tr A

= (a1 - a2)((A - ~(tr A)I)x1,x1) 
+ .~(a1 + a2)tr A .

So, (3.1) Is obtained from (3.2) as x1,x2 vary over A2.
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The convexity of W~ ~(A) is implied by the convexity of the

(class ical) numerical range and the lemma follows.

Using the above lemma we obtain our first general inclusion relation.

COROLLARY 1. If (‘y1,’y2) is obtained from (y~,ry~) 
by pinching~ then

(3 .3)  W( ~(A) c W 1 (A), VA € C

Proof. By definition of pinching there exists an cr, 0 < a  < 1, such that

ry1 = a’y ~~+ ( 1 - a) ’y ~, ry2 -~~~~~~~) ry1 ÷~~ y2 .

Hence, by Lemma 2, the two sets in (3 .3) are

(3.11a) W
(ry t ,ryi)

(A) = (yj  - ‘y~) 
w(B) + 

~(‘y~ + ‘y~)~tr Al

(3. 11b) W (ry ,y2) (A) = (2a - 1)(’Yj - ry~) W(B) + .~(ry~ + ‘4)ttr A~

where B = A - ~~(tr A)I.

It is imown (e .g. ,  [1],~l66) that the numerical range of any 2 X 2

matrix is an ellipse (possibly degenerate) with the eigenvalues as foci.

That is , W (B) is an ellipse centered at ( l/2)tr B. In our case tr B = 0,

so (‘y
~ 

- ‘y~)W(B) is convex and symmetric with respect to the origin.

Therefore , since -1 <- 2cr - 1 < 1, we have

(2cr - l)(ry~ - ‘y~) W(B) c ( ‘Yj - ‘y~
) W (B)

Hence the set in (3.~a) includes the set in (3.4b), and (3.3) follows.

LE?~4A 3. If c is obtained from c’ by pinching~ then,

(3.5) Wc(A) c w ,(A), VA  € ~~~
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Proof: Let i,j, i < j, be the pinching indices described in (2.1).

Every fixed choice of n - 2 orthonormal vectors in

(3.6) x1,...,x~~1, ~~~~~~~~~ 1’ ~~~~~~~~

determines a 2-space, X, perpendicular to these vectors. The values of

W (A) and W ,(A) corresponding to the vectors in (3.6) are, respectively,

(3.7a) ry (Ax ‘x~a) 
+ w (PA)

k=1 (ry1,ryj
k/i,j

and

n
(3.7b) ~ ‘y

~,.
(Axk,x~,

) +w 1 ,

k=l
k/i, j

Here P is the projection of on X, and it is understoo~-1 that

W, .~(PA) is defined over X, i.e.,
—

W(a~~)(PA) = (a (A x,x) + ~ (Ay,y) : x,y € X; x,y orthonormal)

Since X is 2-dimensional and PA maps X~ into itself , the restriction

of PA to X may be presented by a 2 x 2 matrix. Moreover, it is clear

from (2.1) that since c is a pinch of c’, then (ry1,’y~
) is obtained

from (‘Yj~’y~) by the same pinching. Thus, Corollary 1 implies that

w .,(PA)cW , , (PA)(~y1,fy~, (
~y1,ry~)

Consequently, the set in (3.7b ) includes the set of (3.7a). Since the

vectors in (3.6) were arbitrary, relat ion (3.5) holds and the proof is

complete.

The following theorem is an Immediate consequence of Lemma 3.
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THEOREM 3. If c << c’, then

(3.8) Wc(A) c W ,(A), VA £ Cy.,>~

Proof. By lnjpothesis, there exists a finite sequenc e, c ’ = c1,c2,~~~,c2 = C,

such that each c~ (1 < i < 2), is obtained from C
11 

by pinching.

So, by Lemma 3,

w
~

(A) = W (A) c . . .  c w
~~

(A) = W
~
,(A), Vb~ € C

~ <r~

and (3 . 8 )  follows.

At this point it would be natural to ask whether c .< c ’ implies (3.8)

or not. To answer this question in the negative take A = diag (0 ,1,1) and

= (0 ,1,i). Westwick [2], has shown that W0,(A) includes the points

and 21, but not the open line segment joining them. In particular

(1 + 21)/2 / We,. Now take c = ( l/2,i/2,1/2 + i/2). By (2.2) we have that

c < c’; yet the point

~1(A e3,e3) 
+ ~2(A e1,

e
1) 

+ ~3
(A e2,e,,) = 

~

of Wc(A) does not belong to W
~
,(A).

A somewhat weaker result holds for the relation < , and we establish

first the next lemma.

lEMMA Ii. Given two bowided disjoint convex sets 
~l’ )i~,•, in C~ . then

there exists a linear functional 
~ 

on ~~ such that cp(x) / p (y)  f or
all X £ )(]~, y €

Proof. We first consider ~~ as convex sets in By the Separation



Theorem for real vector spaces (e.g., [ 5 ] ,  Theorem 20, p. 20k), there exists

a linear real functional 4i(x) on B2~~, such that *(x)  < ~(y) for all

x € X1, y € 

~~ 
More explicitly we have

*(x) = 
~ll~1l 

+ + 
~2l~2i 

+ 
~22~22 

+ “ + 
~nl~n1 + 

~n2~n2

where x = 

~~~~~~~~~~ ~ 
= 
~~1 

+ 

~~j2’ 
and the are real coef-

ficients. Now define a complex functional on

p(x) = + 
~~~~ 

+ 

~n~n’ ~
j = 

~jl 
- 1

~j2

It is easily seen that 4r(x) = Re(cp(x)); so Re(cp(x)) < Re(p(y)) for

x £ 

~l’ 
y € N2, and the lemma follows.

THEOREM 4~ We have c < C ’ if and only if

(3.9) W0(A) c conv(W~
i(A)), VA € C1~>~~

Proof. If c < c’, then, for some doubly stociiastic S, we have c = Sc ’.

The matrix S is a convex combination of permutation matrices P0.. Thus

c = a0P0.c ’, and the relation among the components of c arid c’ is

j = 1,...,n .

This yields that any point ~ ‘y~ 
( A x ~~ x~ ) of W

~
(A) satisfies

= E ( A x ~~ x~ ) Z a~’Y0~(~)

= 
~~
a
a[~~ ~ 7(~~) ( A x ~ ) x~ )]
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That is, each point in W~ is a convex combination of points in W~, and

(3.9) follows.

For the necessity part of the proof we recall that the condition

c .< c’ is equivalent to the fact that c belongs to the convex set

• K3 = ~Sc’ : S = doubly stochastic)

Let be the set which consists only of c. If c 
~ 

c’, then

N1 fl N2 = 0, and by Lenma 14 there exist complex coefficients 
~i’ 

. . • ,
~~

such that the linear functional cp(x) = satisfies

(3.10) p(c) / ~cp (x): x € x1) = (p(Sc’) : S = doubly stochastic)

Consider now the matrix B = diag(~1,.. .,~~). We have

n
• (3.11) q ( c )  = r ~ ‘y4 (B e4,e4) € W (B)

j.1 “~~~‘ ‘J .J .j

On the other hand take any point Ej ‘y~ (Bxj,xj) 
in W

~
t(B). Here

[Xj  = 

~~~~~~~~~~~~~~ 
is an orthonorinal system in C~ , ~~ ~~ 

=

z~ = 1 and consequently the matrix X, with = ~~~~~ is

doubly stochastic. Hence

~ “y’ (Bx ,x ) = •S
)f

? I~~ 12
j=l j=1 1=1

n n
~~ = p(Xc’)

1=1 ~ j=l ~J

This gives

W ,(B) c ~ç(Sc’) : S = doubly stochastic)

and since the set on the right side is convex, we get in fact

(3.12) cony W ,(B) c (p(Sc’) : S = doubly stochastic)



The inclusion in (3.12) together with (3.10), (3.11) yields

W (B) ~ cony W ,(B), and (3 . 9)  is violated.

14. The case of real coeff icients

For real vectors c the situation is much simpler. As in the complex

case, the set W (A) remains unchanged under permutations of the ‘y~.

Therefore , given a set of coefficients fy1,
...,ry), it will often be con-

venient to arrange them in decreasing order .

DEFINITION 2. A real vector c = is called ordered if

The convenience of ordering real vectors is demonstrated in the next

lemma.

lEMMA 5. If C ’ is ordered and c < C ’, then

k k
(1~.l) E ‘I’4 < ~ ‘y~, k = l,...,n

j =l ~ j=1 “

with equality for k = n.

Proof. If c < c t then for some doubly stochastic 5, we have c = Sc ’.

Hence for a fixed k, 1 < k < n,

k k n n i k  v
(li .2) L ‘v1 = ~~ 

~i 
ISV’ = ~ ~i ) 

ISV’

i=1 j=l j=]. j=l i~=1

Setting
k

a4 ~ ~~~~ j  = 1,2,...,n
.1 1=1 •‘
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we have
n

(14 .3) 0 <ci < 1 and ~ a = k
j j=1 ~

So, using the fact that c’ is ordered, we get from (14.2), (11 .3)

n k

• z ‘v1 = ~ crj ’Y~~~ E ‘y~~
.

1=1 j=i

For k = xi each a~ = 3. and we have equality.

We remark that the relations In ( ‘~.l) are discussed in Chapter 2 of

t61, beginning with Section 2.18 .

Two more preliminary result leads to Theorem 5.

lEMMA 6. Let ‘4~’y~ with ‘4> ‘y~ be two real components of c’. ~~~

satisfy O<~~~~ ’4_ ’y~. Then

c c’ - ~(e1 - e~)

is a pinch of c’.

Proof. Der~ te a
’ = B/(.y~ - ‘y~). Evidently 0 <a’ < 1, and by the

definition of c we have

(l1 .l1a) ‘~#~ = ‘4 - & = ‘4 - a’(’4 - ry~~) = (1 - a’)’4 +

and

(14.14b) 
~~~~ 

= ‘y
, 

+ & = + cx’(’yj - ‘y~
) = a”4 ÷ (1 -

EquatIons ( 14.14) are equivalent to (2.1), hence c is a pinch of c’ and

the statement is proven.



-16-

LEMMA 7. Let c,c’ be ordered. If c,c’ satisfy (14.1) with equality

~~~ k = n , then c~~< c ’.

Proof. The Idea of the• proof is to construct a sequence of vectors

C ’ = c1,c~, ~~~~~ such that each c1 has the following three properties.

First,

(14.5) c1 << c~~1, I> 2 ;

second,

k k
(14.6) E Z ‘y~ , k = l,2,...,n

j=l i j=1

with equality for k = n; and third, the number of equal elements in the

sets 
~~~~~~ 

and 
~~~~~~~~~~ 

is at least i - 1. Here the

and ‘V1j are, respectively, the components of c and c1.

By the last property, there exists a finite £ (2 < n), for which

C
2 

= c. Hence, by property (14.5) we get

( 14. 7) C = cg <.< ... <.< c~ = C ’,

which leads by transitivity to the desired result c << c’.

As indicated, we start by choos ing c1 = c ’, for which the first and

third properties are satisfied In a trivial manner . To show the second, we

use the hypothesis c < c ’ with Lemma 5, and find that c and c1 
c’

satisfy (14.6).

Now suppose that ~~~~~~~ with the above properties has been con-

structed. If c1 = C, then the sequence (14.7) is complete; so let us
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assume c1 ~
( c and construct c~+1. We have the inequalities in (14.6)

from which we conclude that there exist an r, 1 < r < n, so that

(14.8a) = ‘
~
‘i1’”~ ’7r-l = ‘Vi,r_ i ;< ‘

~ir

and a least a, r < a < n, such that

(1i .8b ) > ‘y.3~

8ince c is ordered, we have ‘
~r 

> ‘y, which together with (14.8) gives

7ir > ‘~
‘r ~~ 

‘
~
‘
~ 

> ‘
~
‘is So the quantity

(14.9) = ‘
~
‘ir ‘

~
‘r’ “s 

-

satisfies 0 < & - ~~~ Hence, by Lemma 6,

(14.10) c1~1 cj - &( e~. - e~)

is a pinch of c1. So c1~1 << c~, i.e., c~4,1 has the first property (14.5).

Next, we wish to show that c1÷1 has the second property, tha t is

k k

~ 
‘y
~
< E ‘y~÷1J=l j=1

with equality for k = n. Since c1 satisfies (14.6), and since c~~1 Is

obtained from c1 by changing only the r and a components while their

sum is preserved, It is clear that for any k with 1 < k < r or

s < k < n , we have

k k k
E 

~i 
= 

~~ 
‘
~
‘i+l

j=l j=1 j=].

Now use ( 1 4. 8 )  - (14.10) to find that

~i+l,r 
~~~~~~~~~~~~~~~ - 

~r



-18-

So, also for r < k < s ,

k N k
E 

~ ~~~~ ~; ‘yi+lj=l “ j=1 ~ j=l

Finally, consider the third property. According to the construction of

we have 
~i+1,r 

‘
~
‘r or ‘

~
‘i+l,s = ‘y ,  or both. So, by comparing

wIth (14.8) we see that the number of components of ci+1 
which eq’~al

components of c is greater than the number of equalities for c~ and c,

and is therefore at least j. This completes the proof.

C~ flb Ining Lemmas 5 and. 7, together with Theorem 1, we easily obtain

the followIngs

THEOREM 5. Let c, c’ be ordered vectors. Then each of the relations

c .< c’ and c << C ’ is equivalent to

k k
(14.11) 

~~~ 
~~~~ 

< ~~ ‘y~ , k =

j=i j=l

with equality for k n.

In general, it is more convenient to verify~ condition (14.11), than

to check w~iether c < c’ or c <-< c ’ according to the original

definitions.

Since the relations c < c’ and c .~z < c’ are preserved under

permutations of the Yj~ ‘V~ 
we rephrase part of Theorem 5:

ThEOREM 6. if c, c’ are real vectors, then the relations c < c’ and

C << c’ are equivalent.

We come now to one of’ the main results.
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TI{EOR~ 4 7. If c, c’ are real, then c .< c’ if and only if

(11 .12) w0(A) cw
~
,(A), VA € C1. .

Proof. By Theorem 6, c .< c’ implies c << c’, so by Theorem 3 we

have (14.12). Conversely, (14.12) yields (3.9) and by Theorem 14, c .< c’ .

REMARK. Theorem 7 can be obtained. immediately from Theorem 14, using the

fact that for real c, W,~ is convex, I.e., W,~ = conv[W
~
3. Yet, the

convexity if W~ Is not essential to the proof.

COROLLARY 2. (a) If c = (‘y
r 
.. . , ‘y )  € with 

~~ 
‘y~ = a, then

(a/n,..’,a/n) < c and hence

(14.13) tr A } c w
~
(A), eA € C~~~

(b) If > 0, then c .< (cx,0,.~ .,O) ~~~

W
~
(A) cci w(A), VA € 

~~~~

(c) If a = 0  then

~ w
~

(A) = to) .
A€C

~x

Proof. First take the ordered version of c and observe that Theorems 5, 7

yield (a) and (b). Now, if ci = 0, then according to (14.13), 0 € Wc(A) for

all A. Since W~ (o) = (0) we have (14.114) and the corollary follows.
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COROLLARY 3. ~ j~11m3re and Wj1liuu~). The k-numerical ran~es sati~ fy

(h .15) {
~ 

tr A} = w (A) c ... cW 2(A) c W1(A) W (A)

Proof: By (1.1), W (A) W (A) with the ordered vectora cS

c = s1’ ””~
’sn~ 

= ~~ (e1 + • . .  + e)
S

For all 1 < a <in we have

N k

~ ‘Y5j = ‘~~ min[k,s) ? ~ ± 1 !nintk,s + 1) = 

j=l 
rYs+l j

j=l

with equality for N = n. So Theorem 5 implies that c < C , 1 < s < n.s+1 s — —

Hence, by The orem 7,

W ,(A) = W (A) cW~ (A) = W5(A) ; s = l,•..,n _ 1
8+.i. 5

and we get (14.15).

Tbta result was obtained in a different way , using the convexity of Wk,

by Fillmore and Williams, [ 7] .

BEMkRIC. In general, for given vectors c = 

~
‘1’”~”~

’n~’ 
c’ = ( ‘Yj~

...
~ ’V1;)~

there exists no constant ?~ such that c < ?~c ’. To demonstrate this state-

ment assume that c,c’ are ordered and that E ‘y, > 0, ~ ‘y,~ ~ 0. If

c < ?c ’, then for some doubly stochastic S we would have c ?~Sc ’, which

yields
xi xi xi

E’y1 = ?~~~ ~~~
S
U ’y

~~= ? ~~
E f y

~~
.

1=1 1=1 j=1 j=1
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Consequent 1y

(4.16)

so A> 0, and ?~c ’ is ordered. Now, by Theorem 5 we should get

k k
(11.]?) ~ ‘y1 < ?~ ~ ‘y’ , N = l,...,n

j=1 j=1

with equality for k = xi. But as ?~ of (14.16) satisfIes (14.17) for k = n,

it wifl not, in general, satisfy the rest of (14.17).

The situation is quite different in the homogeneous case E = ~ = C,

where we have the following result.

lEMMA 8. Let c, c’ be ordered vectors with !~ ‘Yj = 

~~ 
‘v~ = 0 ~~ c’ ~ 0.

Set

“V +~~•~~+ ‘Y
(14.18a) = ~(c,c ’)  = max

l�k<n ~l~~~~”~~~
’
~k

(14.18b) = ~(c,c’) = mm
1�kc:n “Va + ... + “Vn~k+l

Then c < Ac ’ If and only’ If A or A <

Proof. First we show that

+ ... + “V~ç > O~ ‘y1 + •. .  + ‘
~
‘n-k÷l <0 ; k l, . ,n - 1

Since ~~ ‘y = 0, It suffices to prove the left inequalities, so assuxrx~ that

‘4 + 
~~~~ 

+ ‘y~ < 0 for some k < n. This means that ‘y1~÷1 + ... + y
~
> 0,

thus ‘
~~ ÷~~~

> 0, and consequently ‘yj > •.. ‘y~ ~ ‘y~~1 > 0. SInce c’ / 0,
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we have 0 and our assumption is contradicted. Simila.rly, the partial

+ N < n, are non-negative, and it follows that ~~‘

of (14.18) are well defined and satisfy i~ > 0, ~ < 0.

Now choose A with A >  0. The vector Ac’ remains ordered, and

according to Theorem 5, c < Ac ’ if and only if

k N
A ~ ‘y’ > 

~ 
‘y ; ~~~~~~~~~~~

j=1 ~ J=l

with equality for N = n. The hypothesis E = ~~ 
= 0 implies equality

for N = x i ;  so c < Ac’ is equivalent to

N N
(4.19) A E > E ‘y~, N = l,”~ ,n - 1

j=1 j=1

However, by the definition of r~,

k N
E ~ 

‘y~~, k = l ,...,n - l ,
j=1 j=l

with equality for some 1 < k < n. Thus, (14.19) holds if and only if

If A < 0, then Ac ’ becomes unordered, and its equivalent ordered

version with a posit ive multiplier is ( -A)( - ”y~, 
. . ,_ yj). Using the pr evious

argument, we find that c < Ac ’ if and only if

+ ~~~~~~ + ‘Vk “Vi 
+ 

~~~~ 
+ “V

—A> max , = -mm , 
N 

= ,
— 1�k(n “Vn - - “Vn~k+l j~~~.rn ’

~’n + 
~~~~ 

+

c~nd the lemma follows.

Theorem 7 and Lemma 8 have an immediate consequence.

THEOREM ~~. Let c, c ’ be ordered vectors w1t~ E~ ‘Yj = 
~~~ 

0



-

0. Then

W
~
(A) C WA ,(A) 

~~c’~~~ 
VA € C~,><~

if and only if A >  ri(c,c’) or A < ~(c ,c ’) where ~~ are defined in

(4.18).

COROLlARY 14. Let a = (a 1, ... ,cx~) and a ’ = ~~~~~~~~~ be ordered

vectors such that not all the components of a’ are equa l. Set ~~ = ~~

a’ = ~ ci, , -and define

c = a - (a/n,...,cr/n), c’ = a’ - (a’/n,...,cr’/n)

Then,

W (A) - tr A } c A (W~~(A) - {~
_ 

tr 
A})  ‘ VA € C~><~

if and only if A >  ~(c,c’) or A < ~(c,c’), where ~~, ~ are given in

(14.18).

Proof . The components of the vectors c, c’ satisfy 
~~ 

= = 0, and

c’ 1 0. Hence, by Theorem 8.

W (A) - {2 tr A} = WC(A) c AW~
,(A) = A (Wa~

(A) - tr A) , ~~A € C~~~

If and only If the conditions of the corollary are satisfied .

~~~~~ neralized numorical radths

A concept which directly relates to the generalized numerical range
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Wc (A )j  is the generalized numerical radius

r (A) = max t i z i  : z € W
~

( A ))

= 

~~~~~~~~ 
~~~~~~~~~~~ : (x1,~

..,x )  € A~}.

Li particular we have the k-numerical radius

rk(A) = max ti z i : z € wk(A)) , N = l,2,’”,n

which reduces, for k = 1, to the classical numerical radius

r(A) = max ( I z f  : z € W(Afl = max ( A x ,x ) l
xI =i

The ftnetion r(A)  provides an important tool in the linear stability

analysis of multiditn2nsional hyperbolic and parabolic initial value prob1em~

(e.g., [8] §2), and one m a y  expect that the generalized radius will be

applicable as well.

It is obvious tha t if W
C(A) 

c W
~
,(A) or even if Wc(A) c cony

then r
~
(A) < rc t(A), 

though the corwerse may fttil to hold. Thus, we use

Theorems 14, 8 and Cor ollaries 2,3, to obtain, respect ively, the following

results.

ThEOREM ~~. (a) If c, e’ are complex n-vectors with c < C ’
, then

(~ .i) r
~
(A) r

~
,(A), V A € C~ <~

(b) Let c, c ’ be re]~ ~rd~ reiJ v~ ct rs w it h 
~ 

~~ 0 and

c’ / 0. Let A satisfy A >  ~(c,c ’) or A <  ~(c,c’) where ~~ are

defin~d i n  p 14 .1 ) • Then

r (A) ~A 1 r
~
,(A) , VA ~~~~
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(c) For c (y1
,... .“v~

) real with 
~ 

ci,

ltr A l <r (A) , \7’A € C~~~

!~ ‘v~~~°~ !~i~
r (A) <ci r(A) , VA  €

(d) The k-numerical radii satisfy

~ Jtr A f = r (A) . ..  < r1(A) = r(A) , VA €

~ C-~~~~~ cal ra es

The numerical ranges defined in this paper can be generalized in the

following way .

DEFINITION 3. Let C € be fixed and let denote the group of

n x n unitary matrices. We call the set

W
C
(A) = ttr (CU*AU) : U €

the C-numerical range of the n-square matrix A.

If c = ( r y
1

, , ‘y )  is a given vector , we take D = diag (‘y1, 
...

and find tha t

(6 .1) Wc(A) = 
{~~~~ 

~~~~~~~~ : (x1,...,x~) € A }

= (tr (DU’~AU) : U ~ 
WD(A)
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So , indeed, W (A) is a special case of the C-numerical range. In fact

our last result will characterize the class of matrices C for which

Wc(A) = W (A) VA € C

‘ First, we give two simple properties of the C-numerical range .

LEMMA 9. (a) For any C, A € ~~~ we have

(6.2) W
c(A) = wA(c)

(b) The set Wc(A) is invariant under unitary similarities of C or

of A.

Proof. We have

WC (A) = (tr ( Cu*Au ) U u~) = (tr (U~AUC) : U €

= ~tr (AUCU~ ) : U € W~(C)

so (6.2) holds, and it follows tha t C and A play a symmetric role in

the definition of Wc(A). Hence, for part (b), It suffices to show that

Wc(A) is invariant under unitary similarities of A. But that is an

immediate consequence of DefInition 3 which states that WC(A) depends only

on the class, g(A) = (UNAU : U € of matrices unitarily similar to A.

The next result leads to Theorem 10.

lEMMA 10. If S, g ’ are compact connect ed subsets of so that

(6 .3) [~(X) X g) = [p(X ’) : X ’ g’)
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for all linear functionals ~p on , then

conv(g) r- cony (s’)

Proof. We recall that the hyperplanes (of real dimension 2n2 - 1) of

are the loci of the equat ions

Re (p(x))  = a

as q varies over the nonzero functionals in and a varies in ]R.

Since g is connected, a hyperplarie intersects g if and only if it intersects

conv [~~ ; thus ((.3) implies

(6.14) (Re (ç (X ) )  : x € = (Re (p(X’)) : X ’ € X’) , V~ ~ C~ <~

Now choose a functior.al ~ and consider the set of real values

= (Re ( q (x ) ) : X c.

Since N is compact and connected, ~~
(N) Is a closed interval with end points

mm R~ (N) 
‘ ~2 

= max

Thi s means that a hyperplane Re ( q ( x ) )  = a intersects K if and only

if a € R~(N), and in particular

(6.~ ) Re (p(X)) j , ,~ , Re (q(X)) =

are the two planes of support for ~ defined by p.

According to (6.14)

(6.6) R~(X) =~~ (x ’) , vq  €
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so the hyperp.Lanes In (6.5) support N ’ as well as N, for all ‘p. Since

convex sets are uniquely determined by their supporting planes, the proof

is complete.

THEOREM 10. We have

(6.7) Wc(A) = W
ci(A) VA € C

~~n

if and only if C, C ’ are unitarily similar.

Proof. If C, C ’ are unltarily similar, then (6.7) Is given by part (b)

of Lemma 9.

For the converse we use (a) oX’ Lemma 9 by which the hypothesis in (6.7)

becomes wA(C) = WA(C’) for all A; or more explicitly

(6.8) (t i,  (A TJ*CU) : U € = [tr (AU~C ’U) U € , VA c

Next we remen~ber that every linear functional q on is of the f orm

n n

~(x) r E ciu 1~~4i = tr (hX)
i=i. j=1 ‘~~~~‘~

where A = [cijj] Is a matrix of coefficients, and X = 
~~~ 

is arbitrary.

Thus, the hypothesis in (6.8) takes the form

(q,(X) X € g) = (p(X’) x ’ g’) , vc € ~~

where

g = (U*C U : U € 
~~~ 

, g ’ = (U~c
’U U €

are compact connected subsets of Cr,~ i• Consequently, by Lemma 10,
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(6 .~ ) K conv [g) = cony(~’) N’

The sets )(, ~~~
‘ are compact, so they are spanned by the extreme points of

3 and 3’, respectively. Therefore, by the equality in (6.9) we finally

get

ext(g) = ext(g’)

Now take a point U~CtJ1 in ext(3}. It equals a point TJ~C’ U2 in

ext (S’) where U1, U2 are both unitary. That is,

C = U~C ’U with U = U
2U~ ,

and the theorem is proven.

Our last result characterizes the relation between the C-numerical and

the c-numerical ranges.

COROLlARY 5. For a given C € , there exists a vector c ~i

suc h that

(6.10) Wc(A) = W (A) VA ~~~

if and only if C is normal. If C is normal, then the components of c

are the eigenvalues of C in an arbitrary order.

Proof. By (6.1), the equality in C6.lo) is equivalent to having a diagonal

D = diag 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

such that

Wc(A) = WD(A) VA I

But C 18 unitarlly similar to a diagonal matrix , If and only if’ C is
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normal, so Theorem 10 completes the proof.

Note that if C is normal with real eigenvalues ~~~ . that is

Hermltian — then (6.10) holds with a real C, and by Westwick ’ s Theorem

Wc(A) is convex.

We conclude this paper with the following discussion.

REMARK. It is clear now that Wc
(A) is the range of values of the mapping

3(A) -. C

where

3(A) = (U’~AU U c

and p Is the linear functional on ~~~ defined by

q(X)= tr (CX)

That is, W
c
(A) gives us all the Information a single functional can provide

about the set 3(A). From this point of view, W
~
(A) is an ultimate

generalization of previous concepts of numerical ranges.

However, more information on g(A) could be obtained by considering

~~ppings of the form

X -. (p1(X),~
..,cp (X)) € ~

m 
, (x € g(A))

where pt,. ~‘~ m are functionala on ~~~~ and m is arbitrary . In fact

we do not need m> n
2
; for if we denote by the functional defined by

= X1,~ ~~~ 
,
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then the mapping

2
x _ 

~~~~~~~~~~~~~~ 
= 
~~U’’”’~ nn~ 

€ C

exactly characterizes the set 3(A).
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